A semi-canonical reduction for periods of Kontsevich-Zagier

Juan VIU-Sos

Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau (Francia) Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza

> III Congreso de Jóvenes investigadores de la RSME 2015 Universidad de Murcia

> > 10 septiembre 2015

Contenidos

- Introduction
 - What is a period?
 - Periods of Kontsevich-Zagier
 - Open problems and conjectures
- A semi-canonical reduction
 - Resolution of poles and volumes of compact domains
 - ullet Compact domains in \mathbb{R}^2 and tangent cones
 - An example: π
- Conclusions and perspectives

Part I

Introduction

- "Most of the important constants in mathematics, coming from algebraic geometry".
- Let X be a smooth variety and Y an closed subvariety of X, both defined over \mathbb{Q} :

- "Most of the important constants in mathematics, coming from algebraic geometry".
- Let X be a smooth variety and Y an closed subvariety of X, both defined over Q:
 - Betti cohomology : $H_{\mathsf{B}}^{\bullet}(X,Y;\mathbb{Q}) = \left(H_{\bullet}^{\mathsf{sing}}(X(\mathbb{C}),Y(\mathbb{C});\mathbb{Q})\right)^{\vee}$
 - Algebraic de Rham cohomology: $H^{\bullet}_{dR}(X, Y; \mathbb{Q})$

- "Most of the important constants in mathematics, coming from algebraic geometry".
- Let X be a smooth variety and Y an closed subvariety of X, both defined over Q:
 - Betti cohomology : $H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) = \left(H^{\mathsf{sing}}_{\bullet}(X(\mathbb{C}),Y(\mathbb{C});\mathbb{Q})\right)^{\vee}$
 - Algebraic de Rham cohomology: $H^{\bullet}_{dR}(X, Y; \mathbb{Q})$
- Integration via Poincaré duality defines a pairing

$$\begin{array}{ccc} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \times H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) & \longrightarrow & \mathbb{C} \\ (\gamma,\omega) & \longmapsto & \int_{\gamma} \omega \end{array}$$

- "Most of the important constants in mathematics, coming from algebraic geometry".
- Let X be a smooth variety and Y an closed subvariety of X, both defined over Q:
 - Betti cohomology : $H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) = \left(H^{\operatorname{sing}}_{\bullet}(X(\mathbb{C}),Y(\mathbb{C});\mathbb{Q})\right)^{\vee}$
 - Algebraic de Rham cohomology: $H_{dR}^{\bullet}(X, Y; \mathbb{Q})$
- Integration via Poincaré duality defines a pairing

$$\begin{array}{ccc} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \times H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) & \longrightarrow & \mathbb{C} \\ (\gamma,\omega) & \longmapsto & \int_{\gamma} \omega \end{array}$$

ullet Tensorizing by ${\mathbb C}$, the previous pairing gives the *comparison isomorphism*

$$\mathsf{comp}_{\mathsf{B},\mathsf{dR}}: H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) \otimes \mathbb{C} \stackrel{\cong}{\longrightarrow} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \otimes \mathbb{C}$$

represented taking \mathbb{Q} –basis by the *period matrix* $\Pi = \left(\int_{\gamma_i} \omega_j \right)_{i,j=1,\ldots,s}$

- "Most of the important constants in mathematics, coming from algebraic geometry".
- Let X be a smooth variety and Y an closed subvariety of X, both defined over Q:
 - Betti cohomology : $H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) = \left(H^{\mathsf{sing}}_{\bullet}(X(\mathbb{C}),Y(\mathbb{C});\mathbb{Q})\right)^{\vee}$
 - Algebraic de Rham cohomology: $H_{dR}^{\bullet}(X, Y; \mathbb{Q})$
- Integration via Poincaré duality defines a pairing

$$\begin{array}{ccc} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \times H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) & \longrightarrow & \mathbb{C} \\ (\gamma,\omega) & \longmapsto & \int_{\gamma} \omega \end{array}$$

ullet Tensorizing by $\mathbb C$, the previous pairing gives the *comparison isomorphism*

$$\mathsf{comp}_{\mathsf{B},\mathsf{dR}}: H^{\bullet}_{\mathsf{dR}}(X,Y;\mathbb{Q}) \otimes \mathbb{C} \stackrel{\cong}{\longrightarrow} H^{\bullet}_{\mathsf{B}}(X,Y;\mathbb{Q}) \otimes \mathbb{C}$$

represented taking \mathbb{Q} –basis by the *period matrix* $\Pi = \left(\int_{\gamma_i} \omega_j \right)_{i,j=1,\dots,s}$

• QUESTION: Could the comparison isomorphism be induced by an isomorphism $H^{\bullet}_{dR}(X,Y;\mathbb{Q}) \xrightarrow{\simeq} H^{\bullet}_{R}(X,Y;\mathbb{Q})$?

• No! If
$$X=\mathbb{A}^1_{\mathbb{Q}}\setminus\{0\}=\operatorname{Spec}\mathbb{Q}[t,t^{-1}],\ Y=\emptyset$$
 and $\gamma=S^1\subset\mathbb{C}^*$:

$$H_{\mathsf{B}}^{\bullet}(\mathbb{C}^*;\mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H_{\mathsf{dR}}^{\bullet}(X;\mathbb{Q}) = \mathbb{Q}\frac{\mathrm{d}t}{t}$$

but
$$\int_{\gamma} \frac{\mathrm{d}t}{t} = 2\pi i \not\in \mathbb{Q}$$
.

- QUESTION: Could the comparison isomorphism be induced by an isomorphism $H^{\bullet}_{RR}(X,Y;\mathbb{Q}) \xrightarrow{\simeq} H^{\bullet}_{R}(X,Y;\mathbb{Q})$?
 - No! If $X=\mathbb{A}^1_{\mathbb{O}}\setminus\{0\}=\operatorname{Spec}\mathbb{Q}[t,t^{-1}],\ Y=\emptyset$ and $\gamma=S^1\subset\mathbb{C}^*$:

$$H^{\bullet}_{\mathsf{B}}(\mathbb{C}^*;\mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H^{\bullet}_{\mathsf{dR}}(X;\mathbb{Q}) = \mathbb{Q}\frac{\mathrm{d}t}{t}$$

but
$$\int_{\gamma} \frac{\mathrm{d}t}{t} = 2\pi i \not\in \mathbb{Q}$$
.

3

"Transcendental" obstrucción, invariant of the pair (X, Y)!

- QUESTION: Could the comparison isomorphism be induced by an isomorphism $H^{\bullet}_{RR}(X,Y;\mathbb{Q}) \xrightarrow{\simeq} H^{\bullet}_{R}(X,Y;\mathbb{Q})$?
 - No! If $X=\mathbb{A}^1_{\mathbb{Q}}\setminus\{0\}=\operatorname{Spec}\mathbb{Q}[t,t^{-1}],\ Y=\emptyset$ and $\gamma=S^1\subset\mathbb{C}^*$:

$$H_{\mathsf{B}}^{\bullet}(\mathbb{C}^*;\mathbb{Q}) = \mathbb{Q}\gamma^*, \quad H_{\mathsf{dR}}^{\bullet}(X;\mathbb{Q}) = \mathbb{Q}\frac{\mathrm{d}t}{t}$$

but
$$\int_{\gamma} \frac{\mathrm{d}t}{t} = 2\pi i \not\in \mathbb{Q}$$
.

9

"Transcendental" obstrucción, invariant of the pair (X, Y)!

Let \mathbb{R}_{alg} be the field of algebraic numbers.

A set $S \subset \mathbb{R}^d$ is called \mathbb{R}_{alg} —semi-algebraic if can be described as finite unions of sets $\{f_1 *_1 0, \dots f_s *_s 0\}$, where $f_i \in \mathbb{R}_{alg}[x_1, \dots, x_d]$ and $*_i \in \{=, >\}$ for $i = 1, \dots, s$.

Let \mathbb{R}_{alg} be the field of algebraic numbers.

A set $S \subset \mathbb{R}^d$ is called $\mathbb{R}_{\mathsf{alg}}$ –semi-algebraic if can be described as finite unions of sets $\{f_1 *_1 0, \dots f_s *_s 0\}$, where $f_i \in \mathbb{R}_{\mathsf{alg}}[x_1, \dots, x_d]$ and $*_i \in \{=, >\}$ for $i = 1, \dots, s$.

Definition

A period of Kontsevich-Zagier (or effective period) is a complex number whose real and imaginary parts are values of absolutely convergent integrals of the form

$$\mathcal{I}(S, P/Q) = \int_{S} \frac{P(x_1, \dots, x_d)}{Q(x_1, \dots, x_d)} \cdot dx_1 \wedge \dots \wedge dx_d$$

where $S \subset \mathbb{R}^d$ is a d-dimensional \mathbb{R}_{alg} -semi-algebraic set and $P/Q \in \mathbb{R}_{alg}(x_1, \dots, x_d)$.

Let \mathbb{R}_{alg} be the field of algebraic numbers.

A set $S \subset \mathbb{R}^d$ is called \mathbb{R}_{alg} -semi-algebraic if can be described as finite unions of sets $\{f_1 *_1 0, \ldots f_s *_s 0\}$, where $f_i \in \mathbb{R}_{\text{alg}}[x_1, \ldots, x_d]$ and $*_i \in \{=, >\}$ for $i = 1, \ldots, s$.

Definition

A period of Kontsevich-Zagier (or effective period) is a complex number whose real and imaginary parts are values of absolutely convergent integrals of the form

$$\mathcal{I}(S, P/Q) = \int_{S} \frac{P(x_1, \dots, x_d)}{Q(x_1, \dots, x_d)} \cdot dx_1 \wedge \dots \wedge dx_d$$

where $S \subset \mathbb{R}^d$ is a d-dimensional \mathbb{R}_{alg} -semi-algebraic set and $P/Q \in \mathbb{R}_{alg}(x_1,\ldots,x_d)$.

Denote by \mathcal{P}_{KZ} the set of periods of Kontsevich-Zagier and $\mathcal{P}_{KZ}^{\mathbb{R}} = \mathcal{P}_{KZ} \cap \mathbb{R}$.

Let \mathbb{R}_{alg} be the field of algebraic numbers.

A set $S \subset \mathbb{R}^d$ is called \mathbb{R}_{alg} -semi-algebraic if can be described as finite unions of sets $\{f_1 *_1 0, \ldots f_s *_s 0\}$, where $f_i \in \mathbb{R}_{\text{alg}}[x_1, \ldots, x_d]$ and $*_i \in \{=, >\}$ for $i = 1, \ldots, s$.

Definition

A period of Kontsevich-Zagier (or effective period) is a complex number whose real and imaginary parts are values of absolutely convergent integrals of the form

$$\mathcal{I}(S, P/Q) = \int_{S} \frac{P(x_1, \dots, x_d)}{Q(x_1, \dots, x_d)} \cdot dx_1 \wedge \dots \wedge dx_d$$

where $S \subset \mathbb{R}^d$ is a d-dimensional \mathbb{R}_{alg} -semi-algebraic set and $P/Q \in \mathbb{R}_{alg}(x_1,\ldots,x_d)$.

Denote by $\mathcal{P}_{\scriptscriptstyle KZ}$ the set of periods of Kontsevich-Zagier and $\mathcal{P}_{\scriptscriptstyle KZ}^{\mathbb{R}}=\mathcal{P}_{\scriptscriptstyle KZ}\cap\mathbb{R}.$

- **4** Algebraic numbers: $\alpha = \int_0^\alpha \mathrm{d}x$, $\forall \alpha \in \mathbb{R}_{\mathsf{alg}}$.
- As a first transcendental number

$$\pi = \int_{\{x^2 + y^2 \le 1\}} 1 \, dx dy = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx = \int_{\{(1 - x^2)y^2 < 1\}} \frac{dx dy}{2}$$

- **4** Algebraic numbers: $\alpha = \int_0^\alpha \mathrm{d}x$, $\forall \alpha \in \mathbb{R}_{\mathsf{alg}}$.
- As a first transcendental number

$$\pi = \int_{\{x^2 + y^2 \le 1\}} 1 \, dx dy = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx = \int_{\{(1 - x^2)y^2 < 1\}} \frac{dx dy}{2}$$

① Logarithms of algebraic numbers: if $\alpha \in \mathbb{R}_{\mathsf{alg}}$ such that $\alpha > 1$,

$$\log(\alpha) = \int_{1}^{\alpha} \frac{\mathrm{d}t}{t} = \int_{\substack{1 < x < \alpha \\ 0 < xy < 1}} 1 \, \mathrm{d}x \mathrm{d}y$$

- **1** Algebraic numbers: $\alpha = \int_0^\alpha \mathrm{d}x$, $\forall \alpha \in \mathbb{R}_{\mathsf{alg}}$.
- As a first transcendental number

$$\pi = \int_{\{x^2 + y^2 \le 1\}} 1 \, \mathrm{d}x \mathrm{d}y = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, \mathrm{d}x = \int_{\{(1 - x^2)y^2 < 1\}} \frac{\mathrm{d}x \mathrm{d}y}{2}$$

 $\textbf{ § Logarithms of algebraic numbers: if } \alpha \in \mathbb{R}_{\mathsf{alg}} \mathsf{ such that } \alpha > 1,$

$$\log(\alpha) = \int_{1}^{\alpha} \frac{\mathrm{d}t}{t} = \int_{\substack{1 < x < \alpha \\ 0 < xy < 1}} 1 \, \mathrm{d}x \mathrm{d}y$$

 \bullet Multi-zeta values, Elliptic integrals, $\Gamma(p/q)^q$, Feynmann integrals,...

- **4** Algebraic numbers: $\alpha = \int_0^\alpha \mathrm{d}x$, $\forall \alpha \in \mathbb{R}_{\mathsf{alg}}$.
- As a first transcendental number

$$\pi = \int_{\{x^2 + y^2 \le 1\}} 1 \, \mathrm{d}x \mathrm{d}y = \int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, \mathrm{d}x = \int_{\{(1 - x^2)y^2 < 1\}} \frac{\mathrm{d}x \mathrm{d}y}{2}$$

 $\textbf{ 0} \ \, \text{Logarithms of algebraic numbers: if } \alpha \in \mathbb{R}_{\text{alg}} \text{ such that } \alpha > 1,$

$$\log(\alpha) = \int_{1}^{\alpha} \frac{\mathrm{d}t}{t} = \int_{\substack{1 < x < \alpha \\ 0 < xy < 1}} 1 \, \mathrm{d}x \mathrm{d}y$$

1 Multi-zeta values, Elliptic integrals, $\Gamma(p/q)^q$, Feynmann integrals,...

But, how many transcendental numbers contains $\mathcal{P}_{\scriptscriptstyle KZ}$?

But, how many transcendental numbers contains $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$?

Theorem

 $\mathcal{P}_{\text{\tiny KZ}}$ forms a countable $\overline{\mathbb{Q}}$ -algebra.

But, how many transcendental numbers contains $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$?

Theorem

 $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$ forms a countable $\overline{\mathbb{Q}}$ -algebra.

But, how many transcendental numbers contains $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$?

Theorem

 $\mathcal{P}_{\text{\tiny KZ}}$ forms a countable $\overline{\mathbb{Q}}$ -algebra.

Kontsevich-Zagier: Conjecturally, e, $1/\pi$ or Liouville numbers are not periods.

But, how many transcendental numbers contains $\mathcal{P}_{\scriptscriptstyle \mathrm{KZ}}$?

Theorem

 $\mathcal{P}_{\text{\tiny KZ}}$ forms a countable $\overline{\mathbb{Q}}$ -algebra.

Kontsevich-Zagier: Conjecturally, e, $1/\pi$ or Liouville numbers are not periods.

Open problems and conjectures

From the foundational paper:

Maxim Kontsevich and Don Zagier. Periods, 2001.

Conjecture (Konsevich-Zagier periods conjecture)

If a real period admits two integral representations, then we can pass from one formulation to the other using only three operations (called the KZ–rules):

- integral additions by domains or integrands.
- change of variables.
- Stokes formula.

Moreover, these operations should respect the class of the objects previously defined.

Open problems and conjectures

From the foundational paper:

Maxim Kontsevich and Don Zagier. Periods, 2001.

Conjecture (Konsevich-Zagier periods conjecture)

If a real period admits two integral representations, then we can pass from one formulation to the other using only three operations (called the KZ-rules):

- integral additions by domains or integrands.
- change of variables.
- Stokes formula.

Moreover, these operations should respect the class of the objects previously defined.

Conjecture (Equality algorithm)

Determination of an algorithm which allows us to prove if two periods are equal of not.

Open problems and conjectures

From the foundational paper:

Maxim Kontsevich and Don Zagier. Periods, 2001.

Conjecture (Konsevich-Zagier periods conjecture)

If a real period admits two integral representations, then we can pass from one formulation to the other using only three operations (called the KZ–rules):

- integral additions by domains or integrands.
- change of variables.
- Stokes formula.

Moreover, these operations should respect the class of the objects previously defined.

Conjecture (Equality algorithm)

Determination of an algorithm which allows us to prove if two periods are equal of not.

Part II

A SEMI-CANONICAL REDUCTION FOR PERIODS

"Periods of Kontsevich-Zagier I: A semi-canonical reduction.", arXiv:1509.01097, 26 pags., (Preprint)

MAIN IDEAS:

• codify all the complexity of a period on the semi-algebraic domain.

MAIN IDEAS:

- codify all the complexity of a period on the semi-algebraic domain.
- choose a "good" class of semi-algebraic domains in \mathbb{R}^d :
 - Topological properties,
 - Semi-algebraic complexity,
 - . . .

Main ideas:

- codify all the complexity of a period on the semi-algebraic domain.
- choose a "good" class of semi-algebraic domains in \mathbb{R}^d :
 - Topological properties,
 - Semi-algebraic complexity,
 - ...
- obtain this new form from an integral representation of a period in an algorithmic way and only using the three KZ–rules.

Main ideas:

- codify all the complexity of a period on the semi-algebraic domain.
- choose a "good" class of semi-algebraic domains in \mathbb{R}^d :
 - Topological properties,
 - Semi-algebraic complexity,
 - . . .
- obtain this new form from an integral representation of a period in an algorithmic way and only using the three KZ-rules.

Theorem (Semi-canonical reduction)

Let $p \in \mathcal{P}_{KZ}$ be non-zero given in an integral form $\mathcal{I}(S, P/Q)$ in \mathbb{R}^d . Then there exists an effective algorithm satisfying the KZ–rules such that $\mathcal{I}(S, P/Q)$ can be written as

$$p = \operatorname{sgn}(p) \cdot \operatorname{vol}_{d+1}(K),$$

where $K \subset \mathbb{R}^{d+1}$ is a top-dimensional compact semi-algebraic set.

Theorem (Semi-canonical reduction)

Let $p \in \mathcal{P}_{KZ}$ be non-zero given in an integral form $\mathcal{I}(S, P/Q)$ in \mathbb{R}^d . Then there exists an effective algorithm satisfying the KZ–rules such that $\mathcal{I}(S, P/Q)$ can be written as

$$p = \operatorname{sgn}(p) \cdot \operatorname{vol}_{d+1}(K),$$

where $K \subset \mathbb{R}^{d+1}$ is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic partitions!

Theorem (Semi-canonical reduction)

Let $p \in \mathcal{P}_{KZ}$ be non-zero given in an integral form $\mathcal{I}(S, P/Q)$ in \mathbb{R}^d . Then there exists an effective algorithm satisfying the KZ–rules such that $\mathcal{I}(S, P/Q)$ can be written as

$$p = \operatorname{sgn}(p) \cdot \operatorname{vol}_{d+1}(K),$$

where $K \subset \mathbb{R}^{d+1}$ is a top-dimensional compact semi-algebraic set.

 $\label{eq:Strategy: Strategy: (birational) change of variables + (linear) semi-algebraic partitions!$

Compactification of domains.

Theorem (Semi-canonical reduction)

Let $p \in \mathcal{P}_{\text{KZ}}$ be non-zero given in an integral form $\mathcal{I}(S, P/Q)$ in \mathbb{R}^d . Then there exists an effective algorithm satisfying the KZ–rules such that $\mathcal{I}(S, P/Q)$ can be written as

$$p = \operatorname{sgn}(p) \cdot \operatorname{vol}_{d+1}(K),$$

where $K \subset \mathbb{R}^{d+1}$ is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic partitions!

- Compactification of domains.
- (a) (Algotihmic) resolution of poles over the boundary: holding local compacity of domains!

Our principal result:

Theorem (Semi-canonical reduction)

Let $p \in \mathcal{P}_{KZ}$ be non-zero given in an integral form $\mathcal{I}(S,P/Q)$ in \mathbb{R}^d . Then there exists an effective algorithm satisfying the KZ–rules such that $\mathcal{I}(S,P/Q)$ can be written as

$$p = \operatorname{sgn}(p) \cdot \operatorname{vol}_{d+1}(K),$$

where $K \subset \mathbb{R}^{d+1}$ is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic partitions!

- Compactification of domains.
- (Algotihmic) resolution of poles over the boundary: holding local compacity of domains!
- ③ We obtain $p = \text{vol}_{d+1}(K_1) \text{vol}_{d+1}(K_2)$ → Riemann sums to construct K.

Our principal result:

Theorem (Semi-canonical reduction)

Let $p \in \mathcal{P}_{KZ}$ be non-zero given in an integral form $\mathcal{I}(S, P/Q)$ in \mathbb{R}^d . Then there exists an effective algorithm satisfying the KZ–rules such that $\mathcal{I}(S, P/Q)$ can be written as

$$p = \operatorname{sgn}(p) \cdot \operatorname{vol}_{d+1}(K),$$

where $K \subset \mathbb{R}^{d+1}$ is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic partitions!

- Compactification of domains.
- (Algotihmic) resolution of poles over the boundary: holding local compacity of domains!
- **3** We obtain $p = \text{vol}_{d+1}(K_1) \text{vol}_{d+1}(K_2) \rightsquigarrow \text{Riemann sums to construct } K$.

Compactification

We define the *projective closure* of a semi-algebraic set $S \subset \mathbb{R}^d$ by the topological closure of the inclusion of $S \hookrightarrow \mathbb{P}^d_{\mathbb{R}}$.

Theorem

 $\mathbb{P}^d_{\mathbb{R}}$ can be constructed as the gluing of C_1,\ldots,C_{d+1} affine unit hypercubes through their opposite faces, and such that the Zariski closure of $\bigcup_{i,j=0}^d (C_i \cap C_j)$ is the hyperplane arrangement

$$\mathcal{A} = \{x_i^2 - x_j^2 = 0 \mid 0 \le i < j \le d\} \subset \mathbb{P}^d_{\mathbb{R}}$$

 \rightarrow $D = D_1 \sqcup ... \sqcup D_{d+1}$ affine compact up to (d-1)-dim semi-algebraic sets.

Compactification

We define the *projective closure* of a semi-algebraic set $S \subset \mathbb{R}^d$ by the topological closure of the inclusion of $S \hookrightarrow \mathbb{P}^d_{\mathbb{R}}$.

Theorem

 $\mathbb{P}^d_{\mathbb{R}}$ can be constructed as the gluing of C_1,\ldots,C_{d+1} affine unit hypercubes through their opposite faces, and such that the Zariski closure of $\bigcup_{i,j=0}^d (C_i \cap C_j)$ is the hyperplane arrangement

$$\mathcal{A} = \{x_i^2 - x_j^2 = 0 \mid 0 \le i < j \le d\} \subset \mathbb{P}^d_{\mathbb{R}}$$

 $\leadsto D = D_1 \sqcup \ldots \sqcup D_{d+1}$ affine compact up to (d-1)-dim semi-algebraic sets.

We can assume that we are dealing with integrals $\mathcal{I}(S,P/Q)$ with compact domains.

Let W_0 be a smooth real algebraic variety defined over \mathbb{R}_{alg} . Let $S \subset W_0$ be a compact semi-algebraic set in W_0 and ω a top differential rational form in W_0 . Denote by $\partial_z S$ the Zariski closure of ∂S and by $Z(\omega)$ and $P(\omega)$ the real zero and pole locus of ω , respectively.

We can assume that we are dealing with integrals $\mathcal{I}(S,P/Q)$ with compact domains.

Let W_0 be a smooth real algebraic variety defined over \mathbb{R}_{alg} . Let $S \subset W_0$ be a compact semi-algebraic set in W_0 and ω a top differential rational form in W_0 . Denote by $\partial_z S$ the Zariski closure of ∂S and by $Z(\omega)$ and $P(\omega)$ the real zero and pole locus of ω , respectively.

We use embedded resolution of singularities to send the poles "far away" from ∂S .

Proposition (Geometric criterion for convergence)

The integral $\int_S \omega$ converges absolutely if and only if there exist a finite sequence of blow-ups $\pi = \pi_r \circ \cdots \circ \pi_1 : W_r \to W_0$ over smooth centers such that $\widetilde{S} \cap P(\pi^*\omega) = \emptyset$, where \widetilde{S} the strict transform of S.

We can assume that we are dealing with integrals $\mathcal{I}(S,P/Q)$ with compact domains.

Let W_0 be a smooth real algebraic variety defined over \mathbb{R}_{alg} . Let $S \subset W_0$ be a compact semi-algebraic set in W_0 and ω a top differential rational form in W_0 . Denote by $\partial_z S$ the Zariski closure of ∂S and by $Z(\omega)$ and $P(\omega)$ the real zero and pole locus of ω , respectively.

We use embedded resolution of singularities to send the poles "far away" from ∂S .

Proposition (Geometric criterion for convergence)

The integral $\int_S \omega$ converges absolutely if and only if there exist a finite sequence of blow-ups $\pi=\pi_r\circ\cdots\circ\pi_1:W_r\to W_0$ over smooth centers such that $\widetilde{S}\cap P(\pi^*\omega)=\emptyset$, where \widetilde{S} the strict transform of S.

 \leadsto it suffices to consider the embedded resolution of singularities of $X = \partial_z S \cup Z(\omega) \cup P(\omega)$.

We can assume that we are dealing with integrals $\mathcal{I}(S,P/Q)$ with compact domains.

Let W_0 be a smooth real algebraic variety defined over \mathbb{R}_{alg} . Let $S \subset W_0$ be a compact semi-algebraic set in W_0 and ω a top differential rational form in W_0 . Denote by $\partial_z S$ the Zariski closure of ∂S and by $Z(\omega)$ and $P(\omega)$ the real zero and pole locus of ω , respectively.

We use embedded resolution of singularities to send the poles "far away" from ∂S .

Proposition (Geometric criterion for convergence)

The integral $\int_S \omega$ converges absolutely if and only if there exist a finite sequence of blow-ups $\pi = \pi_r \circ \cdots \circ \pi_1 : W_r \to W_0$ over smooth centers such that $\widetilde{S} \cap P(\pi^*\omega) = \emptyset$, where \widetilde{S} the strict transform of S.

 \leadsto it suffices to consider the embedded resolution of singularities of $X = \partial_z S \cup Z(\omega) \cup P(\omega)$.

- Hironaka's desingularization is effective algorithmic for fields of char. 0
 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).
- A proper birational map $\pi:W\to\mathbb{R}^d$ where W is a closed d-dimensional $\mathbb{R}_{\mathrm{alg}}$ -subvariety of $\mathbb{R}^d\times\mathbb{P}^m_\mathbb{R}$.

- Hironaka's desingularization is effective algorithmic for fields of char. 0
 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).
- A proper birational map $\pi: W \to \mathbb{R}^d$ where W is a closed d-dimensional $\mathbb{R}_{\mathsf{alg}}$ -subvariety of $\mathbb{R}^d \times \mathbb{P}^m_{\mathbb{R}}$.
 - \leadsto Using decomposition by hypercubes of $\mathbb{P}^m_{\mathbb{R}}$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.

- Hironaka's desingularization is effective algorithmic for fields of char. 0
 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).
- A proper birational map $\pi: W \to \mathbb{R}^d$ where W is a closed d-dimensional $\mathbb{R}_{\mathsf{alg}}$ -subvariety of $\mathbb{R}^d \times \mathbb{P}^m_{\mathbb{R}}$.
 - \leadsto Using decomposition by hypercubes of $\mathbb{P}^m_{\mathbb{R}}$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.

- Hironaka's desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).
- A proper birational map $\pi:W\to\mathbb{R}^d$ where W is a closed d-dimensional $\mathbb{R}_{\mathrm{alg}}$ -subvariety of $\mathbb{R}^d\times\mathbb{P}^m_\mathbb{R}$.
 - \leadsto Using decomposition by hypercubes of $\mathbb{P}_{\mathbb{R}}^m$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.
- \bullet We have a sum of well-defined integrals over compact domains \leadsto taking areas under the integrand:

Corollary

Any real period $p = \mathcal{I}(S, P/Q)$ can be expressed as

$$p = \operatorname{vol}_d(K_1) - \operatorname{vol}_d(K_2),$$

where K_1, K_2 are compact (d+1)-dimensional \mathbb{R}_{alg} -semi-algebraic sets, obtained algorithmically and respecting the KZ-rules from $\mathcal{I}(S, P/Q)$.

- Hironaka's desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).
- A proper birational map $\pi:W\to\mathbb{R}^d$ where W is a closed d-dimensional \mathbb{R}_{alg} -subvariety of $\mathbb{R}^d\times\mathbb{P}^m_\mathbb{R}$.
 - \leadsto Using decomposition by hypercubes of $\mathbb{P}_{\mathbb{R}}^m$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.
- We have a sum of well-defined integrals over compact domains → taking areas under the integrand:

Corollary

Any real period $p = \mathcal{I}(S, P/Q)$ can be expressed as

$$p = \operatorname{vol}_d(K_1) - \operatorname{vol}_d(K_2),$$

where K_1 , K_2 are compact (d+1)-dimensional \mathbb{R}_{alg} -semi-algebraic sets, obtained algorithmically and respecting the KZ-rules from $\mathcal{I}(S, P/Q)$.

 \rightsquigarrow inner and outer Riemann sums on K_1 and K_2 to construct K.

- Hironaka's desingularization is effective algorithmic for fields of char. 0 (Villamayor, 89), implemented in Maple and Singular (Bodnár and Schicho, 2000).
- A proper birational map $\pi:W\to\mathbb{R}^d$ where W is a closed d-dimensional \mathbb{R}_{alg} -subvariety of $\mathbb{R}^d\times\mathbb{P}^m_\mathbb{R}$.
 - \leadsto Using decomposition by hypercubes of $\mathbb{P}_{\mathbb{R}}^m$, we can decompose \tilde{S} in compact sets contained in the charts of the resolution.

Corollary

Any real period $p = \mathcal{I}(S, P/Q)$ can be expressed as

$$p = \operatorname{vol}_d(K_1) - \operatorname{vol}_d(K_2),$$

where K_1 , K_2 are compact (d+1)-dimensional \mathbb{R}_{alg} -semi-algebraic sets, obtained algorithmically and respecting the KZ-rules from $\mathcal{I}(S, P/Q)$.

 \rightsquigarrow inner and outer Riemann sums on K_1 and K_2 to construct K.

Compact domains in \mathbb{R}^2 and tangent cones

This case is more easy to manipulate:

- Blow-ups over points $p \in \partial S$.
- The compacity of the domain can be controlled a priori using the tangent cone $T_p(\partial_z S)$ at p of $\partial_z S$.

Proposition

Let $p \in \partial S$ and suppose that there exists a line L such that $\overline{S} \cap L = \{p\}$. If $L \notin T_p(\partial_z S)$ then there exist a Zariski open $U \subset \widehat{\mathbb{R}}^2$ such that $\widetilde{S}^{\tau} \cap U$ is compact.

Compact domains in \mathbb{R}^2 and tangent cones

This case is more easy to manipulate:

- Blow-ups over points $p \in \partial S$.
- The compacity of the domain can be controlled a priori using the tangent cone $T_p(\partial_z S)$ at p of $\partial_z S$.

Proposition

Let $p \in \partial S$ and suppose that there exists a line L such that $\overline{S} \cap L = \{p\}$. If $L \not\in T_p(\partial_z S)$ then there exist a Zariski open $U \subset \widehat{\mathbb{R}}^2$ such that $\widetilde{S}^{\tau} \cap U$ is compact.

- If $T_p(\partial_z S)$ contains $n \ge 2$ lines: let $X = T_p(X) \cap S$, and $S = X \cup S_1 \cup \ldots \cup S_n$.
- If $T_p(\partial_z S)$ only contains one line: consider $N_p(\partial_z S)$ the normal space of $\partial_z S$ at p and let $X = (T_p(X) \cup N_p(\partial_z S)) \cap S$. We obtain a partition $S = X \cup S_1 \cup S_2$.

Compact domains in \mathbb{R}^2 and tangent cones

This case is more easy to manipulate:

- Blow-ups over points $p \in \partial S$.
- The compacity of the domain can be controlled a priori using the tangent cone T_p(∂_zS) at p of ∂_zS.

Proposition

Let $p \in \partial S$ and suppose that there exists a line L such that $\overline{S} \cap L = \{p\}$. If $L \not\in T_p(\partial_z S)$ then there exist a Zariski open $U \subset \widehat{\mathbb{R}}^2$ such that $\widetilde{S}^{\tau} \cap U$ is compact.

- If $T_p(\partial_z S)$ contains $n \ge 2$ lines: let $X = T_p(X) \cap S$, and $S = X \cup S_1 \cup ... \cup S_n$.
- If $T_p(\partial_z S)$ only contains one line: consider $N_p(\partial_z S)$ the normal space of $\partial_z S$ at p and let $X = (T_p(X) \cup N_p(\partial_z S)) \cap S$. We obtain a partition $S = X \cup S_1 \cup S_2$.

An example: π

A classical way to write $\pi/4$ as an integral is:

$$\frac{\pi}{4} = \int_1^\infty \frac{1}{1+x^2} \mathrm{d}x = \int_D \mathrm{d}x \mathrm{d}y$$

with $D = \{x > 1, 0 < y(1 + x^2) < 1\} \subset \mathbb{R}^2$.

By a change of charts given by the inclusion $U_z = \{[x:y:z] \mid z \neq 0\} \subset \mathbb{P}^2_{\mathbb{R}}$, we obtain a diffeomorphism φ of \mathbb{R}^2 minus a line such that

$$D_1 = \varphi^{-1}D = \left\{ 0 < x_1 < 1, \ 0 < y_1, \ 0 < x_1^3 - y_1(1 + x_1^2) \right\},$$

An example: π

A classical way to write $\pi/4$ as an integral is:

$$\frac{\pi}{4} = \int_1^\infty \frac{1}{1+x^2} \mathrm{d}x = \int_D \mathrm{d}x \mathrm{d}y$$

with $D = \{x > 1, 0 < y(1 + x^2) < 1\} \subset \mathbb{R}^2$.

By a change of charts given by the inclusion $U_z = \{[x:y:z] \mid z \neq 0\} \subset \mathbb{P}^2_{\mathbb{R}}$, we obtain a diffeomorphism φ of \mathbb{R}^2 minus a line such that

$$D_1 = \varphi^{-1}D = \left\{ 0 < x_1 < 1, \ 0 < y_1, \ 0 < x_1^3 - y_1(1 + x_1^2) \right\},$$

$$\mathcal{I}(D,1) = \int_{D} \mathrm{d}x \mathrm{d}y = \int_{D_1} \frac{\mathrm{d}x_1 \mathrm{d}y_1}{x_1^3}.$$

⇒ the jacobian gives a pole of order 3 at the origin.

$$\mathcal{I}(D,1) = \int_{D} \mathrm{d}x \mathrm{d}y = \int_{D_1} \frac{\mathrm{d}x_1 \mathrm{d}y_1}{x_1^3}.$$

 \implies the jacobian gives a pole of order 3 at the origin.

We decrease the order of this pole by a sequence of blow-ups at the origin:

$$\mathcal{I}\left(D,1\right) = \int_{D} \mathrm{d}x \mathrm{d}y = \int_{D_{1}} \frac{\mathrm{d}x_{1} \mathrm{d}y_{1}}{x_{1}^{3}}.$$

⇒ the jacobian gives a pole of order 3 at the origin.

We decrease the order of this pole by a sequence of blow-ups at the origin:

Then

$$\frac{\pi}{4} = \int_{D_1} \frac{\mathrm{d} x_1 \mathrm{d} y_1}{x_1^3} = \text{vol}_2 \left(\left\{ \begin{array}{c} 0 \le x \le 1 \\ 0 \le y_4 (1 + x_4^2) \le 1 \end{array} \right\} \right).$$

$$\mathcal{I}\left(D,1\right) = \int_{D} \mathrm{d}x \mathrm{d}y = \int_{D_{1}} \frac{\mathrm{d}x_{1} \mathrm{d}y_{1}}{x_{1}^{3}}.$$

⇒ the jacobian gives a pole of order 3 at the origin.

We decrease the order of this pole by a sequence of blow-ups at the origin:

Then:

$$\frac{\pi}{4} = \int_{D_1} \frac{\mathrm{d} x_1 \mathrm{d} y_1}{x_1^3} = \mathsf{vol}_2 \left(\left\{ \begin{array}{c} 0 \le x \le 1 \\ 0 \le y_4 (1 + x_4^2) \le 1 \end{array} \right\} \right).$$

Part III

PERSPECTIVES AND CONTINUATION

- Compact semi-algebraic sets have a PL-manifold structure via triangulations:
 - Reduction of the KZ-conjecture in a combinatorial problem?

- Compact semi-algebraic sets have a PL-manifold structure via triangulations:
 - Reduction of the KZ-conjecture in a combinatorial problem?
 - Study of the transcendence of periods?

- Compact semi-algebraic sets have a PL-manifold structure via triangulations:
 - Reduction of the KZ-conjecture in a combinatorial problem?
 - Study of the transcendence of periods?
- We can define a notion of degree for periods with some transcendence consequences:

$$deg(p) = min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = vol_d(K)\}$$

- Compact semi-algebraic sets have a PL-manifold structure via triangulations:
 - Reduction of the KZ-conjecture in a combinatorial problem?
 - Study of the transcendence of periods?
- We can define a notion of degree for periods with some transcendence consequences:

$$\deg(p) = \min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \operatorname{vol}_d(K)\}$$

First natural property: deg(p) = 1 iff $p \in \overline{\mathbb{Q}}$! (Wan, 2011)

- Compact semi-algebraic sets have a PL-manifold structure via triangulations:
 - Reduction of the KZ-conjecture in a combinatorial problem?
 - Study of the transcendence of periods?
- We can define a notion of degree for periods with some transcendence consequences:

$$\deg(p) = \min\{d \in \mathbb{N} \mid \exists K \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \operatorname{vol}_d(K)\}$$

First natural property: $\deg(p)=1$ iff $p\in\overline{\mathbb{Q}}!$ (Wan, 2011)

 An approximation theory for periods based in geometrical approximations of volumes?

- Compact semi-algebraic sets have a PL-manifold structure via triangulations:
 - Reduction of the KZ-conjecture in a combinatorial problem?
 - Study of the transcendence of periods?
- We can define a notion of degree for periods with some transcendence consequences:

$$\deg(p) = \min\{d \in \mathbb{N} \mid \exists \mathcal{K} \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \operatorname{vol}_d(\mathcal{K})\}$$

First natural property: deg(p) = 1 iff $p \in \overline{\mathbb{Q}}$! (Wan, 2011)

- An approximation theory for periods based in geometrical approximations of volumes?
- Implement this reduction in Sage/Singular.

- Compact semi-algebraic sets have a PL-manifold structure via triangulations:
 - Reduction of the KZ-conjecture in a combinatorial problem?
 - Study of the transcendence of periods?
- We can define a notion of degree for periods with some transcendence consequences:

$$\deg(p) = \min\{d \in \mathbb{N} \mid \exists \mathcal{K} \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \operatorname{vol}_d(\mathcal{K})\}$$

First natural property: $\deg(p)=1$ iff $p\in\overline{\mathbb{Q}}!$ (Wan, 2011)

- An approximation theory for periods based in geometrical approximations of volumes?
- Implement this reduction in Sage/Singular.
- Best choice of centers for the general case, in order to decrease complexity.

- Compact semi-algebraic sets have a PL-manifold structure via triangulations:
 - Reduction of the KZ-conjecture in a combinatorial problem?
 - Study of the transcendence of periods?
- We can define a notion of degree for periods with some transcendence consequences:

$$\deg(p) = \min\{d \in \mathbb{N} \mid \exists \mathcal{K} \subset \mathbb{R}^d \text{ compact s.a. such that } |p| = \operatorname{vol}_d(\mathcal{K})\}$$

First natural property: $\deg(p)=1$ iff $p\in\overline{\mathbb{Q}}!$ (Wan, 2011)

- An approximation theory for periods based in geometrical approximations of volumes?
- Implement this reduction in Sage/Singular.
- Best choice of centers for the general case, in order to decrease complexity.

