
Introduction
A semi-canonical reduction

Conclusions and perspectives

A semi-canonical reduction for periods of Kontsevich-Zagier

Juan Viu-Sos
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What is a ”period”?

“Most of the important constants in mathematics, coming from algebraic
geometry”.

Let X be a smooth variety and Y an closed subvariety of X , both defined
over Q:

Betti cohomology : H•B(X ,Y ;Q)=
(
Hsing
• (X (C),Y (C);Q)

)∨
Algebraic de Rham cohomology: H•dR(X ,Y ;Q)

Integration via Poincaré duality defines a pairing

H•B(X ,Y ;Q)× H•dR(X ,Y ;Q) −→ C
(γ, ω) 7−→

∫
γ
ω

Tensorizing by C, the previous pairing gives the comparison isomorphism

compB,dR : H•dR(X ,Y ;Q)⊗ C '−→ H•B(X ,Y ;Q)⊗ C

represented taking Q–basis by the period matrix Π =
(∫

γi
ωj

)
i,j=1,...,s

.
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Question: Could the comparison isomorphism be induced by an

isomorphism H•dR(X ,Y ;Q)
'−→ H•B(X ,Y ;Q)?

No! If X = A1
Q \ {0} = SpecQ[t, t−1], Y = ∅ and γ = S1 ⊂ C∗:

H•B(C∗;Q) = Qγ∗, H•dR(X ;Q) = Q
dt

t

but
∫
γ

dt
t

= 2πi 6∈ Q.

“Transcendental” obstrucción, invariant of the pair (X ,Y )!
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Periods of Kontsevich-Zagier (2001)

Let Ralg be the field of algebraic numbers.

A set S ⊂ Rd is called Ralg–semi-algebraic if can be described as finite unions
of sets {f1 ∗1 0, . . . fs ∗s 0}, where fi ∈ Ralg[x1, . . . , xd ] and ∗i ∈ {=, >} for
i = 1, . . . , s.

Definition

A period of Kontsevich-Zagier (or effective period) is a complex number whose
real and imaginary parts are values of absolutely convergent integrals of the
form

I(S ,P/Q) =

∫
S

P(x1, . . . , xd)

Q(x1, . . . , xd)
· dx1 ∧ . . . ∧ dxd

where S ⊂ Rd is a d–dimensional Ralg–semi-algebraic set and
P/Q ∈ Ralg(x1, . . . , xd).

Denote by Pkz the set of periods of Kontsevich-Zagier and PR
kz = Pkz ∩ R.
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Examples of numbers in Pkz

1 Algebraic numbers: α =
∫ α

0
dx , ∀α ∈ Ralg.

2 As a first transcendental number

π =

∫
{x2+y2≤1}

1 dxdy =

∫ ∞
−∞

1

1 + x2
dx =

∫
{(1−x2)y2<1}

dxdy

2

3 Logarithms of algebraic numbers: if α ∈ Ralg such that α > 1,

log(α) =

∫ α

1

dt

t
=

∫
1<x<α
0<xy<1

1 dxdy

4 Multi-zeta values, Elliptic integrals, Γ(p/q)q, Feynmann integrals,. . .
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Extended inclusion diagram for fields:

Z ⊂ Q ⊂ Ralg ⊂ Q
∩ ∩
PR

kz ⊂ Pkz

∩ ∩
R ⊂ C

But, how many transcendental numbers contains Pkz?

Theorem

Pkz forms a countable Q-algebra.

Not “a lot”!

Kontsevich-Zagier: Conjecturally, e, 1/π or Liouville numbers are not
periods.
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Open problems and conjectures

From the foundational paper:

Maxim Kontsevich and Don Zagier. Periods, 2001.

Conjecture (Konsevich-Zagier periods conjecture)

If a real period admits two integral representations, then we can pass from one
formulation to the other using only three operations (called the KZ–rules):

integral additions by domains or integrands.

change of variables.

Stokes formula.

Moreover, these operations should respect the class of the objects previously
defined.

Conjecture (Equality algorithm)

Determination of an algorithm which allows us to prove if two periods are equal
of not.

Juan Viu-Sos A semi-canonical reduction for periods of Kontsevich-Zagier 9 / 21
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Compact domains in R2 and tangent cones
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A semi-canonical reduction for periods

Part II

”Periods of Kontsevich-Zagier I: A semi-canonical reduction.”,
arXiv:1509.01097, 26 pags., (Preprint)
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Resolution of poles and compact domains

Main ideas:

codify all the complexity of a period on the semi-algebraic domain.

choose a “good” class of semi-algebraic domains in Rd :
Topological properties,
Semi-algebraic complexity,
. . .

obtain this new form from an integral representation of a period in an
algorithmic way and only using the three KZ–rules.
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Resolution of poles and volumes of compact domains
Compact domains in R2 and tangent cones
An example: π

Our principal result:

Theorem (Semi-canonical reduction)

Let p ∈ Pkz be non-zero given in an integral form I(S ,P/Q) in Rd . Then
there exists an effective algorithm satisfying the KZ–rules such that I(S ,P/Q)
can be written as

p = sgn(p) · vold+1(K),

where K ⊂ Rd+1 is a top-dimensional compact semi-algebraic set.

Strategy: (birational) change of variables + (linear) semi-algebraic
partitions!

1 Compactification of domains.

2 (Algotihmic) resolution of poles over the boundary: holding local
compacity of domains!

3 We obtain p = vold+1(K1)− vold+1(K2)  Riemann sums to construct K .
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Compactification

We define the projective closure of a semi-algebraic set S ⊂ Rd by the
topological closure of the inclusion of S ↪→ Pd

R.

Theorem

Pd
R can be constructed as the gluing of C1, . . . ,Cd+1 affine unit hypercubes

through their opposite faces, and such that the Zariski closure of⋃d
i,j=0(Ci ∩ Cj) is the hyperplane arrangement

A = {x2
i − x2

j = 0 | 0 ≤ i < j ≤ d} ⊂ Pd
R

 D = D1 t . . . t Dd+1 affine compact up to (d − 1)–dim semi-algebraic sets.

Juan Viu-Sos A semi-canonical reduction for periods of Kontsevich-Zagier 13 / 21



Introduction
A semi-canonical reduction

Conclusions and perspectives

Resolution of poles and volumes of compact domains
Compact domains in R2 and tangent cones
An example: π

Compactification

We define the projective closure of a semi-algebraic set S ⊂ Rd by the
topological closure of the inclusion of S ↪→ Pd

R.

Theorem

Pd
R can be constructed as the gluing of C1, . . . ,Cd+1 affine unit hypercubes

through their opposite faces, and such that the Zariski closure of⋃d
i,j=0(Ci ∩ Cj) is the hyperplane arrangement

A = {x2
i − x2

j = 0 | 0 ≤ i < j ≤ d} ⊂ Pd
R

 D = D1 t . . . t Dd+1 affine compact up to (d − 1)–dim semi-algebraic sets.

Juan Viu-Sos A semi-canonical reduction for periods of Kontsevich-Zagier 13 / 21



Introduction
A semi-canonical reduction

Conclusions and perspectives

Resolution of poles and volumes of compact domains
Compact domains in R2 and tangent cones
An example: π

Resolution of poles

We can assume that we are dealing with integrals I(S ,P/Q) with compact
domains.
Let W0 be a smooth real algebraic variety defined over Ralg. Let S ⊂W0 be a
compact semi-algebraic set in W0 and ω a top differential rational form in W0.
Denote by ∂zS the Zariski closure of ∂S and by Z(ω) and P(ω) the real zero
and pole locus of ω, respectively.

We use embedded resolution of singularities to send the poles ”far away“ from
∂S .

Proposition (Geometric criterion for convergence)

The integral
∫
S
ω converges absolutely if and only if there exist a finite

sequence of blow-ups π = πr ◦ · · · ◦ π1 : Wr →W0 over smooth centers such
that S̃ ∩ P(π∗ω) = ∅, where S̃ the strict transform of S.

 it suffices to consider the embedded resolution of singularities of
X = ∂zS ∪ Z(ω) ∪ P(ω).
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Hironaka’s desingularization is effective algorithmic for fields of char. 0
(Villamayor, 89), implemented in Maple and Singular ( Bodnár and
Schicho, 2000).

A proper birational map π : W → Rd where W is a closed d–dimensional
Ralg–subvariety of Rd × Pm

R .

 Using decomposition by hypercubes of Pm
R , we can decompose S̃ in

compact sets contained in the charts of the resolution.

We have a sum of well-defined integrals over compact domains  taking
areas under the integrand:

Corollary

Any real period p = I(S ,P/Q) can be expressed as

p = vold(K1)− vold(K2),

where K1,K2 are compact (d + 1)-dimensional Ralg–semi-algebraic sets,
obtained algorithmically and respecting the KZ–rules from I(S ,P/Q).

 inner and outer Riemann sums on K1 and K2 to construct K .
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Compact domains in R2 and tangent cones

This case is more easy to manipulate:
Blow-ups over points p ∈ ∂S .

The compacity of the domain can be controlled a priori using the tangent
cone Tp(∂zS) at p of ∂zS .

Proposition

Let p ∈ ∂S and suppose that there exists a line L such that S ∩ L = {p}. If

L 6∈ Tp(∂zS) then there exist a Zariski open U ⊂ R̂2 such that S̃
τ
∩ U is

compact.

If Tp(∂zS) contains n ≥ 2 lines: let X = Tp(X ) ∩ S , and
S = X ∪ S1 ∪ . . . ∪ Sn.

If Tp(∂zS) only contains one line: consider Np(∂zS) the normal space of
∂zS at p and let X = (Tp(X ) ∪ Np(∂zS)) ∩ S . We obtain a partition
S = X ∪ S1 ∪ S2.
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An example: π

A classical way to write π/4 as an integral is:

π

4
=

∫ ∞
1

1

1 + x2
dx =

∫
D

dxdy

with D = {x > 1, 0 < y(1 + x2) < 1} ⊂ R2.

x

0 1

1
y

y = 1
1+x2

D

By a change of charts given by the inclusion Uz = {[x : y : z] | z 6= 0} ⊂ P2
R,

we obtain a diffeomorphism ϕ of R2 minus a line such that

D1 = ϕ−1D =
{

0 < x1 < 1, 0 < y1, 0 < x3
1 − y1(1 + x2

1 )
}
,
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I (D, 1) =

∫
D

dxdy =

∫
D1

dx1dy1

x3
1

.

=⇒ the jacobian gives a pole of order 3 at the origin.

x1

1

y1

D1

We decrease the order of this pole by a sequence of blow-ups at the origin:

x1

1

y1

D1

x2

1

y2

D2

x3

1

y3

D3

x4

1

1

y4

D4

Then:
π

4
=

∫
D1

dx1dy1

x3
1

= vol2

({
0 ≤ x ≤ 1

0 ≤ y4(1 + x2
4 ) ≤ 1

})
.
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Perspectives and continuation

Compact semi-algebraic sets have a PL–manifold structure via
triangulations:

Reduction of the KZ-conjecture in a combinatorial problem?

Study of the transcendence of periods?

We can define a notion of degree for periods with some transcendence
consequences:

deg(p) = min{d ∈ N | ∃K ⊂ Rd compact s.a. such that |p| = vold(K)}

First natural property: deg(p) = 1 iff p ∈ Q! (Wan, 2011)

An approximation theory for periods based in geometrical approximations
of volumes?

Implement this reduction in Sage/Singular.

Best choice of centers for the general case, in order to decrease complexity.
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