Combinatorics and topology of line arrangements via configurations of points

Benoît Guerville-Ballé and Juan Viu-Sos

Post-docs in Mathematics (FAPESP's grant), ICMC-USP

International School on Singularities and Lipschitz Geometry, June 11th to 22nd, 2018

Some historical facts in topology of Line arrangements and Zariski pairs

Line arrangements in $\mathbb{C}P^2$ are classically studied as simpler case of singular plane algebraic curves

Definition

A (complex) *line arrangement* A is a finite collection of distinct lines in $\mathbb{C}P^2$,

 $\mathcal{A} = \{L_0, L_1, \ldots, L_n\}.$

 \mathcal{A} is *real complexified* if there exists a system of coordinates of $\mathbb{C}P^2$ such that any $L \in \mathcal{A}$ is defined by a **R**-linear form.

The COMBINATORICS is expressed by the associated *incidence graph* Γ_A , with vertices composed by the lines and singular points, joined by an edge if $P \in L$.

What is the influence of the combinatorics Γ_A over the embedded topology of A? Main Question:

<u>TOPOLOGY OF \mathcal{A} </u>: homeomorphism type of the pair ($\mathbb{C}P^2$, \mathcal{A}). Up to 9 lines, the topolog of A is determined by Γ_A . We are interested in produce counterexamples:

Definition

- A *Zariski pair* is a couple of line arrangements (A_1, A_2) with: • same combinatorics: $\Gamma_{A_1} \sim \Gamma_{A_2}$.
- different topologies: $(\mathbb{C}P^2, \mathcal{A}_1) \not\simeq (\mathbb{C}P^2, \mathcal{A}_2).$

Example over \mathbb{R} . Consider that $\mathcal{A} \subset \mathbb{R}P^2$ and let $\mathcal{R}_{\mathcal{A}} = \#$ regions in $\mathbb{R}P^2 \setminus A$. Is this number determined by the combinatorics? Yes, Zaslavsky in 1975 gives the following formula:

 $\mathcal{R}_{\mathcal{A}} = 1 + \sum_{k \ge 2} n_k \cdot (k - 1)$

where n_k is the number of singularities of multiplicity k.

At this moment, there exist only three known examples of Zariski pairs: two pure complex arrangements [5, 4], distinguished by the fundamental group of the complement $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A})$, and a real complexified one [1], detected by using other topological tools. All of them are defined over a non-trivial number field $\mathbb{Q}(\alpha)$, with $\alpha \in \overline{\mathbb{Q}} \setminus \mathbb{Q}$.

IN GENERAL: topological invariants are difficult to compute and differentiate when n increases (a computer assistant is needed). In the case of $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A})$, in general to establish if two such groups are different is a very hard computational problem. All of the previous examples of Zariski pairs needed computer calculations at some point.

Open Questions :	 Is there a way to detect Zariski pairs without using computer calculations? 	• Is $\pi_1(\mathbb{C}P^2\setminus\mathcal{A})$ combinatorially determined for $\mathcal A$ real complexified?
	• A more GEOMETRICAL way to construct Zariski pairs?	$ullet$ Could Zarsiki pairs be realized over $\mathbb{Q}?$

Our Work: Configurations of points and counting parities

We take in the *dual real plane* $\mathbb{R}P^2 = \{L \mid L \subset \mathbb{R}P^2 \text{ a line}\}$:

Our Work: New Zariski pairs obtained "by hand"

- $\mathcal{V} = \{V_1, V_2, V_3\}$ points in general position called *vertices*,
- $S = \{S_1, \ldots, S_n\}$ points called *surrounding-points*,
- $\mathcal{L} = \{\overline{SV} \mid S \in S, V \in \mathcal{V}\}$ collection of lines.

Definition

The tuple C = (V, S, L) is a *planar* (3, 2)-*configuration* if: 1. $\forall V_i, V_j \in \mathcal{V} : \mathcal{S} \cap \overline{V_i V_j} = \emptyset$, 2. $\forall L \in \mathcal{L} : \#S \cap L \equiv 0 \mod 2$.

<u>COMBINATORICS</u>: (nontrivial) collinearity relations between points $\mathcal{V} \sqcup \mathcal{S}$ in $\mathbb{R}P^2$. Using configurations of points in the dual space, we can establish a natural dictionary between configurations of points in $\mathbb{R}P^2$ and real complexified arrangements in $\mathbb{C}P^2 = \mathbb{R}P^2 \otimes \mathbb{C}$:

Definition

The *chamber weight* of C is the value

 $\tau(\mathcal{C}) = \#\mathcal{S} \cap \mathrm{ch}_i \mod 2$

and does not depend on the choice of ch_i .

Theorem ([4], Guerville-Ballé, ____)

If \mathcal{C} is <u>stable</u>, then $\tau(\mathcal{C})$ is a topological invariant of $(\mathbb{C}P^2, \mathcal{A}^{\mathcal{C}})$.

Theorem ([4], Guerville-Ballé, ____)

The configurations C_1 and C_2 are stables, defined over \mathbb{Q} , and have the same combinatorics. Moreover, the dual arrangements $(\mathcal{A}^{\mathcal{C}_1}, \mathcal{A}^{\mathcal{C}_2})$ form a Zariski pair.

 \mathcal{C} is *stable* if for any $\phi \in \operatorname{Aut}(\mathcal{V} \sqcup \mathcal{S})$ resp. collinearity, we have $\phi(\mathcal{V}) = \mathcal{V}$.

Take $C = (\mathcal{V}, \mathcal{S}, \mathcal{L})$ a planar (3, 2)-configuration: the vertices V_1 , V_2 , V_3 define a partition of $\mathbb{R}P^2$ in 4 chambers.

We are interested on counting the parity of points contained at any chamber. In fact, we will prove that this number is a topolo**gical invariant** of the associated line arrangement.

Proof. Just counting points in any of the chambers of C_1 and C_2 !

Using the previous method, we present a total of **10 new examples of Zariski pairs** in [4]. Moreover,

Theorem ([2], Artal, Guerville-Ballé, ____)

The fundamental groups $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{\mathcal{C}_1})$ and $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{\mathcal{C}_2})$ are not isomorphic.

References

[1] E. Artal, J. Carmona Ruber, J. I. Cogolludo-Agustín, and M. Marco Buzunáriz. Topology and combinatorics of real line arrangements. Compos. Math., 141(6):1578–1588, 2005.

[2] E. Artal, B. Guerville-Ballé and J. Viu-Sos. Fundamental groups of real arrangements [5] G. L. Rybnikov. On the fundamental group of the complement of a complex hyperplane arand torsion in the LCS quotients. To appear in *Experimental Mathematics*. Available at arXiv:1704.04152 [math.GT], April 2017.

[3] B. Guerville-Ballé. An arithmetic Zariski 4-tuple of 12 lines. Geom. Topol., 20(1):537–553,2016.

[4] B. Guerville-Ballé, and J. Viu-Sos. Configurations of points and topology of real line arrangements. To appear in *Mathematische Annalen*. Available at arXiv:1702.00922 [math.GT] February 2017.

rangement. Funktsional. Anal. i Prilozhen., 45(2):71–85, 2011. Available at arXiv:9805056 [math.AG]

Contact & Info: ⊠ jviusos@math.cnrs.fr http://jviusos.perso.univ-pau.fr/