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Some historical facts in topology of Line arrangements and Zariski pairs

Line arrangements in CP2 are classically studied as simpler case of singular plane algebraic curves

DefinitionA (complex) line arrangement A is a finite collection of distinct lines in CP2,
A = {L0, L1, . . . , Ln}.

A is real complexified if there exists a system of coordinates of CP2 such that any L ∈ A is defined by a
R-linear form.

The combinatorics is expressed by the associated incidence graph ΓA, with vertices composed by the lines and singular
points, joined by an edge if P ∈ L. L1
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Main Question: What is the influence of the combinatorics ΓA over the embedded topology of A?
Topology of A: homeomorphism type of the pair (CP2,A).
Up to 9 lines, the topoloy of A is determined by ΓA. We are interested in produce counterexamples:

DefinitionA Zariski pair is a couple of line arrangements (A1,A2) with:
• same combinatorics: ΓA1 ∼ ΓA2.
• different topologies: (CP2,A1) 6' (CP2,A2).
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Example over R. Consider that A ⊂ RP2 and let RA = #regionsin RP2\A. Is this number determined by the combinatorics? Yes,Zaslavsky in 1975 gives the following formula:
RA = 1 + ∑

k≥2nk · (k − 1)
where nk is the number of singularities of multiplicity k .

At this moment, there exist only three known examples of Zariski pairs: two pure complex arrangements [5, 4], distinguished by the fundamental group of the complement π1(CP2 \ A), and a realcomplexified one [1], detected by using other topological tools. All of them are defined over a non-trivial number field Q(α), with α ∈ Q \Q.
In general: topological invariants are difficult to compute and differentiate when n increases (a computer assistant is needed). In the case of π1(CP2 \ A), in general to establish if two such groups aredifferent is a very hard computational problem. All of the previous examples of Zariski pairs needed computer calculations at some point.

Open Questions: • Is there a way to detect Zariski pairs without using computer calculations?
• A more geometrical way to construct Zariski pairs? • Is π1(CP2 \ A) combinatorially determined for A real complexified?

• Could Zarsiki pairs be realized over Q?

Our Work: Configurations of points and counting parities

We take in the dual real plane ŘP2 = {L | L ⊂ RP2 a line} :
• V = {V1, V2, V3} points in general positioncalled vertices,
• S = {S1, . . . , Sn} points called surrounding-points,
• L = {SV | S ∈ S, V ∈ V} collection of lines. •V1 • V2
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DefinitionThe tuple C = (V,S,L) is a planar (3, 2)-configuration if:1. ∀Vi, Vj ∈ V : S ∩ ViVj = ∅,2. ∀L ∈ L : #S ∩ L ≡ 0 mod 2.
Combinatorics: (nontrivial) collinearity relations between points V t S in RP2.Using configurations of points in the dual space, we can establish a natural dictionary betweenconfigurations of points in ŘP2 and real complexified arrangements in CP2 = RP2 ⊗ C:

ŘP2
CP2 = RP2 ⊗ CP 7→ P• = P∨ ⊗ C

V AV = {V •1 , V •2 , V •3 }
S AS = {S•1, . . . , S•n}

AC = AV t ASDual Arrangement
{ Combinatorics of C(colinearities) } { Combinatorics of AC(incidences)

}
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Definition

C is stable if for any φ ∈ Aut(V t S) resp. collinearity, we have φ(V) = V.
Take C = (V,S,L) a planar (3, 2)-configuration: the vertices
V1, V2, V3 define a partition of RP2 in 4 chambers.
We are interested on counting the parity of points contained at
any chamber. In fact, we will prove that this number is a topolo-
gical invariant of the associated line arrangement.
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Our Work: New Zariski pairs obtained "by hand"

DefinitionThe chamber weight of C is the value
τ(C) = #S ∩ chi mod 2and does not depend on the choice of chi.

Theorem ([4], Guerville-Ballé, )

If C is stable, then τ(C) is a topological invariant of (CP2,AC).

(A) Configuration C1 with τ(C1) = 0.
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(B) Configuration C2 with τ(C2) = 1.
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Theorem ([4], Guerville-Ballé, )

The configurations C1 and C2 are stables, defined over Q, and have the same combi-natorics. Moreover, the dual arrangements (AC1,AC2) form a Zariski pair.
Proof. Just counting points in any of the chambers of C1 and C2!

Using the previous method, we present a total of 10 new examples of Zariski pairs in [4]. Moreover,
Theorem ([2], Artal, Guerville-Ballé, )

The fundamental groups π1(CP2 \ AC1) and π1(CP2 \ AC2) are not isomorphic.
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