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Denef-Loeser topological zeta function

Let f : (C",0) — (C,0) be a holomorphic germ. Take (D, 0) defined by f.
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Denef-Loeser topological zeta function

Let f : (C",0) — (C,0) be a holomorphic germ. Take (D, 0) defined by f.

Consider an embedded resolution of singularities h: Y — C" of D, with
h=(D) = \U;es Ei normal crossings, E; smooth.
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Denef-Loeser topological zeta function

Let f : (C",0) — (C,0) be a holomorphic germ. Take (D, 0) defined by f.
Consider an embedded resolution of singularities h: Y — C" of D, with
h=(D) = \U;es Ei normal crossings, E; smooth.

~» NUMERICAL DATA: {(N;,v;)}ies C Z>o X Z>1 given by the multiplicities

div(h"f) =Y N:E; and div(h*(dxa A+~ Adxe)) =Y (v — 1)E.

€S i€eS
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Denef-Loeser topological zeta function

Let f : (C",0) — (C,0) be a holomorphic germ. Take (D, 0) defined by f.

Consider an embedded resolution of singularities h: Y — C" of D, with
h=(D) = \U;es Ei normal crossings, E; smooth.

~» NUMERICAL DATA: {(N;,v;)}ies C Z>o X Z>1 given by the multiplicities
div(h"f) =Y N:E; and div(h*(dxa A+~ Adxe)) =Y (v — 1)E.
€S i€S

~> STRATIFICATION OF Y: Forany | = {h,...,in} C S:

Y/—{qEY

*f— Nil cee Ni,,.,
h*f N }27 _il(y) v —1 arround g
h*(Akdx) = y1* o ym™ v(y) - Ardyk
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Let f : (C",0) — (C,0) be a holomorphic germ. Take (D, 0) defined by f.

Consider an embedded resolution of singularities h: Y — C" of D, with
h=(D) = \U;es Ei normal crossings, E; smooth.
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Denef-Loeser topological zeta function

Let f : (C",0) — (C,0) be a holomorphic germ. Take (D, 0) defined by f.

Consider an embedded resolution of singularities h: Y — C" of D, with
(D) = \U;es Ei normal crossings, E; smooth.

~» NUMERICAL DATA: {(N;,v;)}ies C Z>o X Z>1 given by the multiplicities
div(h"f) =Y N:E; and div(h*(dxa A+~ Adxe)) =Y (v — 1)E.
ies ies
~> STRATIFICATION OF Y: Forany | = {h,...,in} C S:

Y/—{qEY

im

W=y, ymm u(y)
. 1 1 i 1 arround q p = mE,\UEJ
h*(Ardxic) =y ym™ V() - Awdyi i€l jg!

Definition

The (local) topological zeta function of f at 0 € C":

Ziop o(fi5) =D _x(Yinh™(0)) HN5+ € Q(s).

Ics
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The Monodromy conjecture

o Consider F; = {f = t} N B, being the Milnor
fiber of f at the origin, for some 0 < n K e < 1.
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The Monodromy conjecture

o Consider F; = {f = t} N B, being the Milnor
fiber of f at the origin, for some 0 < n K e < 1.

@ The monodromy action H*(F;; C) N H*(F:; C).

Conjecture (IGUSA, DENEF-LOESER)

If so € C is a pole of Zop ((f;s), then e*™ s an

eigenvalue of some H'(F;; C) N H'(F:; C), at some 7 D, C
closed point xo € f~*(0) of the origin.
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The Monodromy conjecture

o Consider F; = {f = t} N B, being the Milnor
fiber of f at the origin, for some 0 < n K e < 1.

@ The monodromy action H*(F;; C) N H*(F:; C).

Conjecture (IGUSA, DENEF-LOESER)

If so € C is a pole of Zop ((f;s), then e*™ s an

eigenvalue of some H’(Ft; C) 7 Hi(Ft; C), at some =D,
closed point xo € f~*(0) of the origin.

PROVED FOR: n = 2, Newton-non-degenerate surface sings., n = 3 & homogeneous,
quasi-ordinary sings. (Loeser’88, Rodrigues-Veys'01, Artal et al.’05)
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The Monodromy conjecture

o Consider F; = {f = t} N B, being the Milnor
fiber of f at the origin, for some 0 < n K e < 1.

@ The monodromy action H*(F;; C) N H*(F:; C).

Conjecture (Icusa, DENEF-LOESER)

If so € C is a pole of Zop ((f;s), then e*™ s an

eigenvalue of some H'(F;; C) N H'(F:; C), at some D,
closed point xo € f~*(0) of the origin.

PROVED FOR: n = 2, Newton-non-degenerate surface sings., n = 3 & homogeneous,
quasi-ordinary sings. (Loeser’88, Rodrigues-Veys'01, Artal et al.’05)
HINT: The usual strategy of proof are based in

@ study the combinatorics of the resolutions,

o determine E; giving actual poles vs. A’'Campo monodromy zeta function,

@ comparing different resolutions by the Weak Factorization theorem.
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How easy is to compute and understand an example?

The cusp C: f(x,y) = y* — X%
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How easy is to compute and understand an example?

The cusp C: f(x,y) = y* — X%

Ei:(2,2) Ei:(2,2) Ei:(2,2) E»:(3,3)

c ¢ \/qé

div(h*f) =C+2E1 +3E +6E; and div(h*(dx Ady)) = Ei 4 2E, + 4E3,
where E; ~ P! and C~Al
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How easy is to compute and understand an example?

The cusp C: f(x,y) = y* — X%

Ei:(2,2) Ei:(2,2) Ei:(2,2) E»:(3,3)

c ¢ \/qé

div(h*f) =C+2E1 +3E +6E; and div(h*(dx Ady)) = Ei 4 2E, + 4E3,
where E; ~ P! and C~Al

4545

Zno(f$) = 53 1)(6s 1 5)
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How easy is to compute and understand an example?

Embedded resolutions are HARD and COSTLY to compute in general!
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How easy is to compute and understand an example?

Embedded resolutions are HARD and COSTLY to compute in general!

QUESTION

Is there simplest models of {f = 0} for determine Ziop o(f;5)?
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How easy is to compute and understand an example?

Embedded resolutions are HARD and COSTLY to compute in general!

QUESTION

Is there simplest models of {f = 0} for determine Ziop o(f;5)?

~» OUR WORK: Ziop ((f;s) from embedded Q-resolutions.
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V-manifolds and @Q-normal crossings

Definition

A complex analytic manifold Y is called a V-manifold if Y =, Uk such that each open
Uk ~ C"/ Gy, for some finite Gy C GL,(C).
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V-manifolds and @Q-normal crossings

Definition

A complex analytic manifold Y is called a V-manifold if Y =, Uk such that each open
Uk ~ C"/ Gy, for some finite Gy C GL,(C).

EXAMPLE 1: take w = (qo, .. .

]P2

PZ, = U7, U, where U; ~

,qn) € Z" coprimes. The w-weighted projective space:

B Cn+1\0
T (%05 -+ Xn) Ao (A%xq, ..., A9nx,)
qij(qo,...,?]],...,q,,) =C"/Cy.
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V-manifolds and @Q-normal crossings

Definition

A complex analytic manifold Y is called a V-manifold if Y =, Uk such that each open
Uk ~ C"/ Gy, for some finite Gy C GL,(C).

EXAMPLE 1: take w = (qo, ..., qn) € Z" coprimes. The w-weighted projective space:
IP2 B Cn+1 \ 0
w ~ 90 an
(x05- -+, Xn) Ao (A%xq, ..., A9nx,)

PZ, = U, Uj, where U; ~ 2(qo,- -, Gj,- -, qn) = C"/Cq,.

qj

EXAMPLE 2: The (p, g)-blowing up of the plane, gcd(p, q) = 1:

a2
E C Cpq

71'(p,q)l

{0} c 2
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V-manifolds and @Q-normal crossings

Definition

A complex analytic manifold Y is called a V-manifold if Y =, Uk such that each open
Uk ~ C"/ Gy, for some finite Gy C GL,(C).

EXAMPLE 1: take w = (qo, ..., qn) € Z" coprimes. The w-weighted projective space:
Cn+1 \ 0

T (%05 -+ Xn) Ao (A%xq, ..., A9nx,)

PZ, = U7, U, where U; ~ qij(qo,...,a],...,q,,) =C"/C.

]P2

EXAMPLE 2: The (p, g)-blowing up of the plane, gcd(p, q) = 1:
{(Goy). ) € @ x Pl | (xoy) € B alf

a2
E C Cpq

71'(p,q)l

{0} c 2
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V-manifolds and @Q-normal crossings

Definition

A complex analytic manifold Y is called a V-manifold if Y =, Uk such that each open
Uk ~ C"/ Gy, for some finite Gy C GL,(C).

EXAMPLE 1: take w = (qo, ..., qn) € Z" coprimes. The w-weighted projective space:
Cn+1 \ 0

T (%05 -+ Xn) Ao (A%xq, ..., A9nx,)

PZ, = U7, U, where U; ~ qij(qo,...,a],...,q,,) =C"/C.

]P2

EXAMPLE 2: The (p, g)-blowing up of the plane, gcd(p, q) = 1:
{(Goy). ) € @ x Pl | (xoy) € B alf

EC C%p,q) = %(_]wq) U é(pa _1)

71'(p,q)l

{0} c 2
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V-manifolds and @Q-normal crossings

Definition

A complex analytic manifold Y is called a V-manifold if Y =, Uk such that each open
Uk ~ C"/ Gy, for some finite Gy C GL,(C).

EXAMPLE 1: take w = (qo, ..., qn) € Z" coprimes. The w-weighted projective space:
Cn+1 \ 0

T (%05 -+ Xn) Ao (A%xq, ..., A9nx,)

PZ, = U7, U, where U; ~ qij(qo,...,a],...,q,,) =C"/C.

]P2

EXAMPLE 2: The (p, g)-blowing up of the plane, gcd(p, q) = 1:
{(Goy). ) € @ x Pl | (xoy) € B alf
EcClqy~Li(-1,9Ul(p,-1)
W(""’)l (G [ x)]

[

{0} ce? (x",x%y)  (xy*, ¥9)
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V-manifolds and @Q-normal crossings

Definition

A complex analytic manifold Y is called a V-manifold if Y =, Uk such that each open
Uk ~ C"/ Gy, for some finite Gy C GL,(C).

EXAMPLE 1: take w = (qo, ..., qn) € Z" coprimes. The w-weighted projective space:
Cn+1 \ 0

T (%05 -+ Xn) Ao (A%xq, ..., A9nx,)

PZ, = U7, U, where U; ~ qij(qo,...,a],...,q,,) =C"/C.

]P2

EXAMPLE 2: The (p, g)-blowing up of the plane, gcd(p, q) = 1:
{(Goy). ) € @ x Pl | (xoy) € B alf
EC C%p,q) = %(_17 q) U é(pa _1)

m""’)l (CIF2) N CIF0) BN 3

I Psq)

{0} ce? (x",x%y)  (xy*, ¥9)
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V-manifolds and @Q-normal crossings

Definition

A complex analytic manifold Y is called a V-manifold if Y =, Uk such that each open
Uk ~ C"/ Gy, for some finite Gy C GL,(C).

EXAMPLE 1: take w = (qo, ..., qn) € Z" coprimes. The w-weighted projective space:
Cn+1 \ 0

T (%05 -+ Xn) Ao (A%xq, ..., A9nx,)

PZ, = U7, U, where U; ~ qij(qo,...,a],...,q,,) =C"/C.

]P2

EXAMPLE 2: The (p, g)-blowing up of the plane, gcd(p, q) = 1:
{(Goy). ) € @ x Pl | (xoy) € B alf
EC C%p,q) = %(_17 q) U é(pa _1)

mp,qi )] 1] papl

I » E contains singularities!
{ycer  (Fx%y) (vfy9)
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Weighted (p, q)-blowing up of the plane

Cusp: f(x,y) =y>—x°

c C
@ T Q>

(3.2) (2;-1,3) ‘ (3;2,-1)

Sing(C%,) = {Q1, Q}
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Q-resolutions of singularities

Definition

A hypersurface D C Y has Q-normal crossings if it is locally isomorphic to
(HhU---UHR)/G

where m < dim Y, H; are hyperplanes and G is finite abelian.
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Q-resolutions of singularities

Definition

A hypersurface D C Y has Q-normal crossings if it is locally isomorphic to
(HhU---UHR)/G

where m < dim Y, H; are hyperplanes and G is finite abelian.

Definition (Steenbrink'76)

An embedded Q-resolution of (D,0) C (C",0) is a proper analytic map h: Y — (C",0):
@ Y is a V-manifold with only abelian quotient singularities.
@ h is an isomorphism over Y \ h™!(Dsing).
Q@ h (D)= U,es Ei is Q-normal crossings on Y.
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Q-resolutions of singularities

Definition

A hypersurface D C Y has Q-normal crossings if it is locally isomorphic to
(HhU---UHR)/G

where m < dim Y, H; are hyperplanes and G is finite abelian.

Definition (Steenbrink'76)

An embedded Q-resolution of (D,0) C (C",0) is a proper analytic map h: Y — (C",0):
@ Y is a V-manifold with only abelian quotient singularities.
@ h is an isomorphism over Y \ h™!(Dsing).
Q@ h (D)= U,es Ei is Q-normal crossings on Y.

REMARK: Considering the different isotropy groups { Gk }i—o acting in Y, we can define a
refined stratification Y = | |, ¢ | lx_o Yi.k:

Y.k ={q € Yi | Gk is the isotropy group of g}.
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Motivic ideas: intrinsic definition as motivic integral

KONTSEVICH’S MOTIVIC INTEGRAL :

contact order

/ of f

d

geometric / “Universal”

infinitesimal structure additive invariant
arround 0 of varieties
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contact order
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d
arcs on C"
with origin in 0

geometric / “Universal”

infinitesimal structure additive invariant
arround 0 of varieties
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Motivic ideas: intrinsic definition as motivic integral

KONTSEVICH’S MOTIVIC INTEGRAL :

contact order

/ of f

dptmot
arcs on C" Himo
with origin in 0

geometric / “Universal”

infinitesimal structure additive invariant
arround 0 of varieties
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Motivic ideas: intrinsic definition as motivic integral

KONTSEVICH’S MOTIVIC INTEGRAL :

contact order

/ of f

L- ord; f d,Umot

arcs on C"
with origin in 0

geometric / “Universal”

infinitesimal structure additive invariant
arround 0 of varieties
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Motivic ideas: intrinsic definition as motivic integral

DENEF-LOESER MOTIVIC ZETA FUNCTION :

contact order

/ of f

. _ —ord; f+
Zroto(fi5) = L s
arcs on C
{ with origin in 0 }

geometric / “Universal”

infinitesimal structure additive invariant
arround 0 of varieties

Juan Viu-Sos (ICMC-USP, Sio Carlos) 12th Workshop on Singularities, Geometry and Diff. Equations



Motivic ideas: intrinsic definition as motivic integral

DENEF-LOESER MOTIVIC ZETA FUNCTION :

contact order

/ of f

. _ —ord; f+
Zroto(fi5) = L s
arcs on C
{ with origin in 0 }

geometric / K’ “universal”
infinitesimal structure additive invariant
arround 0 specialization of varieties
by x(-)
ZtOP,o(f; s)
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Motivic ideas: Grothendieck ring of varieties

(Ko(Varg), +, ) is the ring:
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Motivic ideas: Grothendieck ring of varieties

(Ko(Varg), +, ) is the ring:

o generated by classes [X] of isomorphism of complex varieties.
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Motivic ideas: Grothendieck ring of varieties

(Ko(Varg), +, ) is the ring:

o generated by classes [X] of isomorphism of complex varieties.
o relations:

> for any (Zariski) closed subset F C X: [X] = [X \ F] + [F],
- X x Y] = [X]-[Y].
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Motivic ideas: Grothendieck ring of varieties

Definition
(Ko(Varg), +, ) is the ring:

o generated by classes [X] of isomorphism of complex varieties.
o relations:

> for any (Zariski) closed subset F C X: [X] = [X \ F] + [F],
- X x Y] = [X]-[Y].

The unit elements: 0 = [)] and 1 = [pt], respectively. Denote I = [AE].
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Motivic ideas: Grothendieck ring of varieties

Definition
(Ko(Varg), +, ) is the ring:

o generated by classes [X] of isomorphism of complex varieties.
o relations:
> for any (Zariski) closed subset F C X: [X] = [X \ F] + [F],
> X x Y] =I[X]-[Y]

The unit elements: 0 = [)] and 1 = [pt], respectively. Denote I = [AE].

EXAMPLE : [P'] =[CU{c0}] =L+ 1. In fact, as P" = C"UP"*, for n > 1,

[P=L"+L" "4 +L+1
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Motivic ideas: Grothendieck ring of varieties

Definition

(Ko(Varg), +, ) is the ring:

o generated by classes [X] of isomorphism of complex varieties.
o relations:
> for any (Zariski) closed subset F C X: [X] = [X \ F] + [F],
> X x Y] =I[X]-[Y]

The unit elements: 0 = [)] and 1 = [pt], respectively. Denote I = [AE].

Z X(X) = Euler characteristic
X/} Zt] Px(t) = Poincaré polynomial
Ko(Varc) :
? Z[u, v] Hx (u, v) = Hodge-Deligne polynomial
Z N, (X) = Number of F,-points
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ts, cylinders: motivic measure

Let X be an algebraic variety.
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Arcs, m-jets, cylinders: motivic measure

Let X be an algebraic variety.
e THE SPACE OF ARCS: L(X) = {pts of X with coord. in C[[t]]}.

o THE SPACE OF m-JETS: Ln(X) = {pts of X with coord. in C[t]/(t™")}.
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Arcs, m-jets, cylinders: motivic measure

Let X be an algebraic variety.
e THE SPACE OF ARCS: L(X) = {pts of X with coord. in C[[t]]}.

o THE SPACE OF m-JETS: Ln(X) = {pts of X with coord. in C[t]/(t™")}.

0 TRUNCATION MAPS: 7 : £(X) = Lm(X), 72 Ling1(X) = Lm(X)..
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Arcs, m-jets, cylinders: motivic measure

Let X be an algebraic variety.
e THE SPACE OF ARCS: L(X) = {pts of X with coord. in C[[t]]}.

o THE SPACE OF m-JETS: Ln(X) = {pts of X with coord. in C[t]/(t™")}.
0 TRUNCATION MAPS: 7 : £(X) = Lm(X), 72 Ling1(X) = Lm(X)..

A C L(X) is a cylinder if A= 75" (7m(A)), where m,(A) C Ln(X) is constructible, for
some m > 0.
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Arcs, m-jets, cylinders: motivic measure

Let X be an algebraic variety.
e THE SPACE OF ARCS: L(X) = {pts of X with coord. in C[[t]]}.

o THE SPACE OF m-JETS: Ln(X) = {pts of X with coord. in C[t]/(t™")}.
0 TRUNCATION MAPS: 7 : £(X) = Lm(X), 72 Ling1(X) = Lm(X)..

A C L(X) is a cylinder if A= 75" (7m(A)), where m,(A) C Ln(X) is constructible, for
some m > 0.

Consider the localization M¢ = Ko(Vare)[IL™}], there exist a normalized measure

Jpmot : {cylinders on L(X)} — Me
[ (A)]
A — ||I£1n LrmiD)

in a completion M¢ — Mg, where

[Va]L ™" — 0 <= dim Vi — im —> —00
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The motivic zeta function

Let f : (C",0) — (C,0) be an analytic germ. Consider s € C and define:

L(C")o = {v € L(C") | ¥(0) = 0}
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The motivic zeta function

Let f : (C",0) — (C,0) be an analytic germ. Consider s € C and define:

L(C")o = {v € L(C") | ¥(0) = 0}

The (local) motivic zeta function of f is given by

Zmot,o(f; S) _ / L~ ord; f‘sd,uzmot
L(C")o

=" fimot {7 € L(C")o | 0rde(f 04) = m} - L™™*

m>0
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Change of variables and normal crossing divisors formula

MAIN TOOL IN MOTIVIC INTEGRATION: Consider
@ h:Y — X proper map between general varieties X and Y.

o AC L(X) and B C L(Y') measurables such that h induces a bijection between
them.

o a:A— ZU{oo} integrable in this context.
@ Jac(h) = Jacobian ideal sheaf of h.
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@ h:Y — X proper map between general varieties X and Y.

o AC L(X) and B C L(Y') measurables such that h induces a bijection between
them.

o a:A— ZU{oo} integrable in this context.
@ Jac(h) = Jacobian ideal sheaf of h.

Theorem (KONTSEVICH, DENEF-LOESER)

/A]L_adlu’mot,ﬁ(x) - /BL_mh_ordtJaC(h)d“m%ﬁ(Y)
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Change of variables and normal crossing divisors formula

MAIN TOOL IN MOTIVIC INTEGRATION: Consider
@ h:Y — X proper map between general varieties X and Y.

o AC L(X) and B C L(Y') measurables such that h induces a bijection between
them.

o a:A— ZU{oo} integrable in this context.
@ Jac(h) = Jacobian ideal sheaf of h.

Theorem (KONTSEVICH, DENEF-LOESER)

/A]L_adlu’mot,ﬁ(x) - /BL_mh_ordtJaC(h)d“m%ﬁ(Y)

If both X, Y are smooth, Jac(h) = K, relative canonical divisor.
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Intrinsic definition as motivic integral

If h: Y — C" is an embedded resolution of D defined by f,
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Intrinsic definition as motivic integral

If h: Y — C" is an embedded resolution of D defined by f,

h_l(D):UEi ~ {(Nj,vi)}ties and {Yi}ics
i€S

Zmot,O(f—; 5)
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Intrinsic definition as motivic integral

If h: Y — C" is an embedded resolution of D defined by f,

h_l(D):UEi ~ {(N,',l/,')},’es and {Y[}lcs
ieS
change

of vars

1 L — 1)L~ (Nist)
Znool9) 21705 i) [ B DL
ICS i€l
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Intrinsic definition as motivic integral

If h: Y — C" is an embedded resolution of D defined by f,

h_l(D):UEi ~ {(N,',l/,')},’es and {YI}ICS
€S
change

of vars

! L — 1)L~ (Mistw)
Zmot,o(f; S) =L Z [Y/ N h_l(O)] ’ H ( 1-— Ig_(NiS-H/i)
ICS i€l

specialization by x(+)
(L —1)
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Intrinsic definition as motivic integral

If h: Y — C" is an embedded resolution of D defined by f,

h_l(D):UEi ~  {(Ni,vi)}ies and {Yi}ics

€S
change
of vars
1 L — 1)L~ (Nist)
Zmot,O(f; S) =L"" Z [)/I N h_l(o)] : H ( 1— IB—(N/S-H/,')

IcSs i€l

specialization by x(+)
(L —1)

Ziopo(fis) = D _x(Yinh™(0)) HNs+u
Ics !
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Studies on quotient singularities

o (VEYS'91): Ziop(f;s) for log-canonical models in n = 2 & using determinants of
p-deformations in lgusa’s p-adic zeta functions.
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Studies on quotient singularities

o (VEYS'91): Ziop(f;s) for log-canonical models in n = 2 & using determinants of
p-deformations in lgusa’s p-adic zeta functions.

o (DENEF-LOESER’01): Study of motivic measures for quotient singularities C"/G,
for finite G C GL,(C), in terms of “fractional” arcs in C".

~+ motivic orbifold measures in terms of 7 : C" — C"/G.
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Studies on quotient singularities

o (VEYS'91): Ziop(f;s) for log-canonical models in n = 2 & using determinants of
p-deformations in lgusa’s p-adic zeta functions.

o (DENEF-LOESER’01): Study of motivic measures for quotient singularities C"/G,

for finite G C GL,(C), in terms of “fractional” arcs in C".

~+ motivic orbifold measures in terms of 7 : C" — C"/G.

~ ord¢ Jac(h) very complicated to compute.

o OUR WORK:
. Q Gor -1 ordt (rKx)
~+ Q-Gorenstein measure - > (A)= [ L dftmot.-
A

~+ Zmot,o for Q-divisors in Q-Gorenstein vareties,

~~ Change of variables in terms of the relative divisor ord; K; and pQ Gor

~ ‘ New formula from Q-resolution of singularities ‘
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Our work: New formulas from Q-resolutions

Consider h: Y — (C",0) and embedded Q-resolution of a germ  : (C",0) — (C,0).
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Our work: New formulas from Q-resolutions

Consider h: Y — (C",0) and embedded Q-resolution of a germ  : (C",0) — (C,0).

o Stratification: Y = | |,-s|l;_o Y7.x by numerical data of h and isotropy groups.
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o For any Y/, assume that:
> G is small, i.e. does not contain non-trivial rotations around hyperplanes.
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Our work: New formulas from Q-resolutions

Consider h: Y — (C",0) and embedded Q-resolution of a germ  : (C",0) — (C,0).

o Stratification: Y = | |,-s|l;_o Y7.x by numerical data of h and isotropy groups.

o For any Y/, assume that:
> G is small, i.e. does not contain non-trivial rotations around hyperplanes.

> For every g € Y} i, we can choose local coordinates s.t. any g € G acts as
diag(&°te, ..., &%me) with 0 < e < |Gk and
N-: N, vy k—1 vy k—1
Wf =y ey ™ u(y), T (Akdxi) =y ey (y) - Akdy
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Our work: New formulas from Q-resolutions

Consider h: Y — (C",0) and embedded Q-resolution of a germ  : (C",0) — (C,0).

o Stratification: Y = | |,-s|l;_o Y7.x by numerical data of h and isotropy groups.

o For any Y/, assume that:
> G is small, i.e. does not contain non-trivial rotations around hyperplanes.

> For every g € Y} i, we can choose local coordinates s.t. any g € G acts as
diag(&°te, ..., &%me) with 0 < e < |Gk and

N- N, vy k—1 vy k—1
W f =y ey uly), B (Adxi) =y ey () - Ady
> Define the expression:
5[ k § : IL 51 g (N1 k-s+vy i)+ +en g (Np g5+, k))

g€ Gk
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Our work: New formulas from Q-resolutions

Consider h: Y — (C",0) and embedded Q-resolution of a germ  : (C",0) — (C,0).

o Stratification: Y = | |,-s|l;_o Y7.x by numerical data of h and isotropy groups.

o For any Y/, assume that:
> G is small, i.e. does not contain non-trivial rotations around hyperplanes.

> For every g € Y} i, we can choose local coordinates s.t. any g € G acts as
diag(&°te, ..., &%me) with 0 < e < |Gk and

N- N, vy k—1 vy k—1
W f =y ey uly), B (Adxi) =y ey () - Ady
> Define the expression:
5[ k § : IL 51 g (Nyi-s+vy k) +-4en g (Np k- s+, k))

g€ Gy

Theorem (Ledn-Cardenal, Martin-Morales, Veys,

. B L — 1)L~ (Nis+vi)
Znoro(fis) =L7" > [Y/,kﬂh 1(0)} '5/,k(]L)'H(1_]I)Iw-

ICS i€l
k=0,...,r
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Our work: New formulas from Q-resolutions

Consider h: Y — (C",0) and embedded Q-resolution of a germ  : (C",0) — (C,0).

o Stratification: Y = | |,-s|l;_o Y7.x by numerical data of h and isotropy groups.

o For any Y/, assume that:
> G is small, i.e. does not contain non-trivial rotations around hyperplanes.

> For every g € Y} i, we can choose local coordinates s.t. any g € G acts as
diag(&°te, ..., &%me) with 0 < e < |Gk and

N- N, vy k—1 vy k—1
W f =y ey uly), B (Adxi) =y ey () - Ady
> Define the expression:
5[ k § : IL 51 g (Nyi-s+vy k) +-4en g (Np k- s+, k))

g€ Gk

Specializing by the Euler Characteristic:

Ztop’o(f; s)= Z X (Y/,k N h_l(O)) - |Gy - H ﬁ
IE’ i 1

ICS
k=0,...,r
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Example: 2-branches cusp singularity

Let f(x,y) = (x* + y9)(x" + y°) with (p,q) = (u,v) =1 and g <o

C

G
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Example: 2-branches cusp singularity

Let f(x,y) = (x* + y9)(x" + y°) with (p,q) = (u,v) =1 and g <

<z

Ex(Na, 12)

i Q(v:i—1,u) Q:<uq—pv
1 ~
El(leVl) S

Ca Ca
-

(pig,—1) T(s,qr—ps)

——
Ry
NS
S

(piq,—1) Ei(Ne, 1)
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Example: 2-branches cusp singularity

Let f(x,y) = (x* + y9)(x" + y°) with (p,q) = (u,v) =1 and g <o
E>(N2, v2)

Q 0(vi—1,u) uq — pv
cl 2=

Ca Ca ~
BN 4 &£ a
C1 1( 1, Vl) P2
— ‘ .

Ta.p)  (gq;—1,p) (pig,—1) T(s,qr—ps) (pig,—1

) E1(Ny, 1)

Numerical data of h = 7, qu—pv) © T(q,p):

(Ni,v1) = (p(g+v),p+q) and (N2,12) = (v(p+u),u+v).
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Example: 2-branches cusp singularity

Let f(x,y) = (x* + y9)(x" + y°) with (p,q) = (u,v) =1 and g <o

Ex(Na, 12)
~ Q(v:i—1,u) _ ug—pv| v —q
C [ [ z “\Nug—pv|—u p
S N
. \/V T Ei(No) Egp C1
PR .
Taw) (-1, g, —1 Ti(s.qr—ps) iq,—1
o (g =1.p) ‘ (pig,=1) M a— a 5 (pig,~1) E1(Ny, 1)
1

Numerical data of h = 7, qu—pv) © T(q,p):
(Ni;11) = (p(q +v),p+q) and (N2, v2) = (v(p+ u),u+v).

Stratification
E= EFUE UPLUPUQUQURQ
N—— N e’

punctured lines quot. sings.
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Example: 2-branches cusp singularity

Let f(x,y) = (x* + y9)(x" + y°) with (p,q) = (u,v) =1 and g <o

C

Ca G
c \/V T E1(Ny, 1)
1
Tap)  (q;—1,p) ‘ (pig.—1) T(s,qr—ps)

Numerical data of h = 7(, qu—pv) © T(q,p):

(N, 1) = (p(qg + v), p+ q)

Stratification

and

E>(Na, v2)

G
——
P,

Q 8(v;—1,u) Q:<uquv

Q Py

uq — pv

v —q
“u p
C1

(pig,—1)

Ei(Ny, 1)
1

(N27V2) = (V(p + u)7 u—+ V)'

E= EfUE UPIUP,LUQURRUQR
N—— R e

punctured lines

Euler Characteristics:

X(E') = x(E5) = x(P., \ 3pt) = x(P' \ 3pt) = -1

quot. sings.
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Example: 2-branches cusp singularity

Let f(x,y) = (x* + y9)(x" + y°) with (p,q) = (u,v) =1 and g <o

Ex(N2,12)
R R Q8(vi—1,u) Q:<uquv v —q)
C2 Ca C1 B ug—pv|—-u p
E1(Na,11) ——" G
G N P,
Tan (G-Lp) | (pig.-1)  Team gD
Q Py Q ’

Numerical data of h = 7(, qu—pv) © T(q,p):

(Ni,v1) = (p(g+v),p+q) and (No,12) = (v(p+u),u+v).

1

1
E: (-1)—— E: (-1)——
! ( )le-i-l/l, 2 ( )N2$-|-1/27
1
P L :

— P
(s+1)(Ms+v1) > (s+1)(Nos+ 1)

Q: p O : v , uq — pv

1 N15-|—V17 2 N25-|—l/27 (N15+V1)(N2$+V2)
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Example: 2-branches cusp singularity

Let f(x,y) = (x* + y9)(x" + y°) with (p,q) = (u,v) =1 and g <o

Ex(Na, 12)
Qe(v;—1,u) Qi<uq—pv v 7(])
C G G z “\Nug—pv|—u p
S N

) \/V T (M) Egp C1
1

PR .

T@r) (g —1,p) ‘ (pig,-1) T(s,ar—ps) (pig,—1) Ei(Ne )

Q P Q '

Numerical data of h = 7, qu—pv) © T(q,p):

(Ni,v1) = (p(g+v),p+q) and (N2,12) = (v(p+u),u+v).

Zew o (Fr5) = (pv(zq +)— Ny — Nz)S2 + ((PV — 1)1 +12) + VlV?)S + e
top o751 5) = (s 4+ 1)(Mis + v1)(Nos + 12)
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Example: Brieskorn-Pham surface singularity

Let g(x,y,z) =xP +y9 42", p,q,r € N pairwise coprimes, w = (qr, pr, pq)
D=V(g)C €3, has an isolated singularity at the origin.
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Example: Brieskorn-Pham surface singularity

Let g(x,y,z) =xP +y9 42", p,q,r € N pairwise coprimes, w = (qr, pr, pq)
D=V(g)C €3, has an isolated singularity at the origin.

Ec C}
TTw

{0} c ¢
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Example: Brieskorn-Pham surface singularity

Let g(x,y,z) =xP +y9 42", p,q,r € N pairwise coprimes, w = (qr, pr, pq)
D=V(g)C €3, has an isolated singularity at the origin.

EcC~UUl,UUs, U=CG
Tw

{0} c ¢
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Example: Brieskorn-Pham surface singularity

Let g(x,y,z) =xP +y9 42", p,q,r € N pairwise coprimes, w = (qr, pr, pq)
D=V(g)C €3, has an isolated singularity at the origin.

E C @?_,2U1UU2UU37 U,‘ZC3/G,' E(pgr, gr + pr + pq)
> E~TP2. (pr)
le (p) (r)
(pq (ar)
{0} c @ ole > /e
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Let g(x,y,z) =xP +y9 42", p,q,r € N pairwise coprimes, w = (qr, pr, pq)
D=V(g)C €3, has an isolated singularity at the origin.
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TTw (p) (r)
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o DNE ~C where C: g(x,y,z) =0 in P2,

Juan Viu-Sos (ICMC-USP, Sio Carlos) 12th Workshop on Singularities, Geometry and Diff. Equations 18/19



Example: Brieskorn-Pham surface singularity

Let g(x,y,z) =xP +y9 42", p,q,r € N pairwise coprimes, w = (qr, pr, pq)
D=V(g)C €3, has an isolated singularity at the origin.

ECcC~Uulbbuls, U=CG E(par. ar + pr + pq)
> E~P2. (pr)
TTw (p) (r)
> Sing(C3)~ L, UL, UL, C P2. (pg (ar)
oyce TOmE) ' @ oz /e

o DNE ~C where C: g(x,y,z) =0 in P2,

o £\ D=~P2\C and (Ne,ve) = (par,qr + pr + pq).
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Example: Brieskorn-Pham surface singularity

Let g(x,y,z) =xP +y9 42", p,q,r € N pairwise coprimes, w = (qr, pr, pq)
D=V(g)C €3, has an isolated singularity at the origin.

E C @?_,2U1UU2UU37 U,‘ZC3/G,' E(pgr, gr + pr + pq)
Tw > E~ IPZ
S B 2 (pq,
(0} c ¢ » Sing(C.) ~ L UL, UL, CP,.

o DNE ~C where C: g(x,y,z) =0 in P2,
o £\ D=~P2\C and (Ne,ve) = (par,qr + pr + pq).

e Stratification by iso. groups of E ~ (P2, \ {axis}) ULy UL, UL;UO1 U O> U Os.
—_—

punctured axis origins
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o DNE ~C where C: g(x,y,z) =0 in P2,
o £\ D=~P2\C and (Ne,ve) = (par,qr + pr + pq).

e Stratification by iso. groups of E ~ (P2, \ {axis}) ULy UL, UL;UO1 U O> U Os.
—_—

punctured axis origins

(ve—p—q—r—1)s+uve
(5+1)(NES+VE)

Ztop,o(g;s) =
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